Назначение нулевого защитного проводника

рис занул3.bmp (674074 bytes)

Рис. 4.7.  К вопросу о необходимости нулевого защитного проводника в трехфазной сети до 1000 В с заземленной нейтралью

Пусть мы имеем схему без нулевого защитного проводника, роль которого выполняет земля (рис. 4.11). Будет ли работать такая схема?

При замыкании фазы на корпус по цепи, образовавшейся через землю, будет проходить ток:

,

где U - фазное напряжение сети, В; r0, rк - сопротивления заземления нейтрали и корпуса, Ом.

Сопротивления обмоток источника тока (например, трансформатора, питающего данную сеть) и проводов сети малы по сравнению с r0 и rк, поэтому их в расчет не принимаем.

В результате протекания тока через сопротивление rк в землю на корпусе возникает напряжение относительно земли Uк равное падению напряжения на сопротивлении rк:

.

Ток Iз может оказаться недостаточным, чтобы вызвать срабатывание максимальной токовой защиты, т. е. установка может не отключиться.

Чтобы устранить эту опасность, надо обеспечить быстрое автоматическое отключение установки, т. е. увеличить ток, проходящий через защиту, что достигается уменьшением сопротивления цепи этого тока путем введения в схему нулевого защитного проводника соответствующей проводимости.

Следовательно, из сказанного вытекает еще один вывод: в трехфазной сети напряжением до 1 кВ с заземленной нейтралью без нулевого защитного проводника невозможно обеспечить безопасность при косвенном прикосновении, поэтому такая сеть применяться не должна.

 

Назначение заземления нейтрали обмоток источника тока

Рассмотрим четырехпроводную сеть, изолированную от земли, т. е. с изолированной нейтралью обмоток источника тока и без повторного заземления нулевого защитного проводника (рис. 4.8, а). Будет ли работать система зануления в такой сети?

рис занул5.bmp (648078 bytes)

а)

рис занул4.bmp (690606 bytes)

б)

Рис. 4.8. Случай замыкания фазы на землю в трехфазной четырехпроводной сети с изолированной (а) и заземленной (б) нейтралью обмоток источника тока

Нетрудно видеть что в этой сети зануление обеспечит отключение пoвpeждeннoй установки так же надежно, как и в сети с заземленной нейтралью. С этой точки зрения режим нейтрали как бы не имеет значения. Однако при замыкании фазы на землю (рис. 4.8, а), что может быть в результате обрыва и падения на землю провода, а также при замыкании фазного провода на неизолированный от земли корпус и т. п., земля приобретает потенциал фазы и между зануленным оборудованием, имеющим нулевой потенциал, и землей возникает напряжение Uк, близкое по значению к фазному напряжению сети U. Оно будет существовать до отключения всей сети вручную или до ликвидации замыкания на землю, так как максимальная токовая защита при этом повреждении не сработает. Указанная ситуация очень опасна.

В сети с заземленной нейтралью при таком повреждении будет практически безопасная ситуация. В этом случае фазное напряжение U разделится пропорционально сопротивлениям замыкания фазы на землю rзм и заземления нейтрали r0 (рис. 4.8, б), благодаря чему Uк уменьшится и будет равно падению напряжения на сопротивлении заземления нейтрали:

где Iзм – ток замыкания на землю, А.

Как правило, сопротивление растеканию тока в месте замыкания на землю rзм, которое оказывает грунт току при случайном замыкании фазы на землю, во много раз больше сопротивления специально выполненного заземления нейтрали rзм. Поэтому Uк оказывается незначительным.

Например, при U= 220 В, r0 = 4 Ом и rзм = 100 Ом:

Таким образом, заземление нейтрали обмоток источника тока, питающего сеть напряжением до 1 кВ, предназначено для снижения напряжения зануленных корпусов (а, следовательно, нулевого защитного проводника) относительно земли до безопасного значения при замыкании фазы на землю.