Национальный исследовательский университет МЭИ Кафедра инженерной экологии и охраны труда
|
4. Технические способы защиты от поражения электрическим током А. Защитное заземлениеВыполнение заземляющих устройств. Различают заземлители искусственные, предназначенные исключительно для целей заземления, и естественные – сторонние проводящие части, находящиеся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду, используемые для целей заземления.Для искусственных заземлителей применяют обычно вертикальные и горизонтальные электроды.В качестве естественных заземлителей могут использоваться: проложенные в земле водопроводные и другие металлические трубы (за исключением трубопроводов горючих жидкостей, горючих или взрывоопасных газов); обсадные трубы артезианских колодцев, скважин, шурфов и т. п.; металлические и железобетонные конструкции зданий и сооружений, имеющие соединения с землей; свинцовые оболочки кабелей, проложенных в земле; металлические шпунты гидротехнических сооружений и т. п.Расчет защитного заземления имеет целью определить основные параметры заземления – число, размеры и порядок размещения одиночных заземлителей и заземляющих проводников, при которых напряжения прикосновения и шага в период замыкания фазы на заземленный корпус не превышают допустимых значений.Для расчета заземления необходимы следующие сведения: 1) характеристика электроустановки — тип установки, виды основного оборудования, рабочие напряжения, способы заземления нейтралей трансформаторов и генераторов и т. п.; 2) план электроустановки с указанием основных размеров и размещения оборудования; 3) формы и размеры электродов, из которых предусмотрено соорудить проектируемый групповой заземлитель, а также предполагаемая глубина погружения их в землю; 4) данные измерений удельного сопротивления грунта на участке, где должен быть сооружен заземлитель, и сведения о погодных (климатических) условиях, при которых производились эти измерения, а также характеристика климатической зоны. Если земля принимается двухслойной, то необходимо иметь данные измерений удельного сопротивления обоих слоев земли и толщина верхнего слоя; 5) данные о естественных заземлителях: какие сооружения могут быть использованы для этой цели и сопротивления их растеканию тока, полученные непосредственным измерением. Если по каким-либо причинам измерить сопротивление естественного заземлителя невозможно, то должны быть представлены сведения, позволяющие определить это сопротивление расчетным путем; 6) расчетный ток замыкания на землю. Если ток неизвестен, то его вычисляют обычными способами; 7) расчетные значения допустимых напряжений прикосновения (и шага) и время действия защиты, в случае если расчет производится по напряжениям прикосновения (и шага). Расчет заземления производится обычно для случаев размещения заземлителя в однородной земле. В последние годы разработаны и начали применяться инженерные способы расчета заземлителей в многослойном грунте. При расчете заземлителей в однородной земле учитывается, сопротивление верхнего слоя земли (слоя сезонных изменений), обусловленное промерзанием или высыханием грунта. Расчет производят способом, основанным на применении коэффициентов использования проводимости заземлителя и называемым поэтому способом коэффициентов использования. Его выполняют как при простых, так и при сложных конструкциях групповых заземлителей. При расчете заземлителей в многослойной земле обычно принимают двухслойную модель земли с удельными сопротивлениями верхнего и нижнего слоев r1, и r2 соответственно и толщиной (мощностью) верхнего слоя h1. Расчет производится способом, основанным на учете потенциалов, наведенных на электроды, входящие в состав группового заземлителя, и называемым поэтому способом наведенных потенциалов. Расчет заземлителей в многослойной земле более трудоемкий. Вместе с тем он дает более точные результаты. Его целесообразно применять при сложных конструкциях групповых заземлителей, которые обычно имеют место в электроустановках с эффективно заземленной нейтралью, т. е. в установках напряжением 110 кВ и выше. При расчете заземляющего устройства любым способом необходимо определить для него требуемое сопротивление. Определение требуемого сопротивления заземляющего устройства производят в соответствии с ПУЭ. Для установок напряжением до 1 кВ сопротивление заземляющего устройства, используемого для защитного заземления открытых проводящих частей в системе типа IT должно соответствовать условию: где Rз - сопротивление заземляющего устройства, ом; Uпр.доп – напряжение прикосновения, значение которого принимается равным 50 в; Iз – полный ток замыкания на землю, А.Как правило , не требуется принимать значение сопротивления заземляющего устройства менее 4 Ом. Допускается сопротивление заземляющего устройства до 10 Ом, если соблюдено приведенное выше условие, а мощность трансформаторов и генераторов, питающих сеть, не превышает 100 кВА, в том числе суммарная мощность трансформаторов и (или) генераторов, работающих параллельно.Для установок напряжением в ыше 1 кВ ыше 1 кВ сопротивление заземляющего устройства должно соответствовать:
В этих выражениях Iз — расчетный ток замыкания на землю.В процессе эксплуатации может произойти повышение сопротивления растеканию тока заземлителя сверх расчетного значения, поэтому необходимо периодически контролировать значение сопротивления заземлителя. |
|